

Introduction to Low Temperature Plasmas

Carmen Guerra-Garcia

Associate Professor of Aeronautics and Astronautics

Massachusetts Institute of Technology

2025 Introduction to Plasma and Fusion Course Princeton Plasma Physics Laboratory (PPPL) June 6, 2025

My background: Aerospace Engineering & Plasma Science

my PhD at MIT!

Aerospace Engineer

technologies **B.S.** Aerospace Postdoc. Engineering Electrostatic discharge and Aerospace Vehicles lightning to aircraft Engineer plasma technologies that Professor @ MIT AeroAstro Ion sources for space Junior engineer promote a sustainable environment, Plasma-assisted technologies for combustion and energy Ph.D. Aerospace propulsion Rocket and Plasma-Assisted Fundamentals of electrical breakdown global security and exploration ٠ mission design Combustion Aircraft safety: lightning, ignition risks Electrical control Research Engineer @Boeing Educate a diverse pool of leaders, of flames Electrostatic discharge and Teach courses on Ionized Gases & Aerospace Propulsion lightning to aircraft creative engineers, and S.M. Aerospace entrepreneurs in Aerospace and Pulsed nanosecond plasmas Plasma Science & Tech Plasma Scientist Undergraduate Industry Graduate Postdoc. Industry R&D Academia time studies studies Massachusetts Massachusetts Institute of Institute of BOEING deimos Technology Technology elecnor aroup PRINCETON UNIVERSITY Spent a few months at Princeton while doing

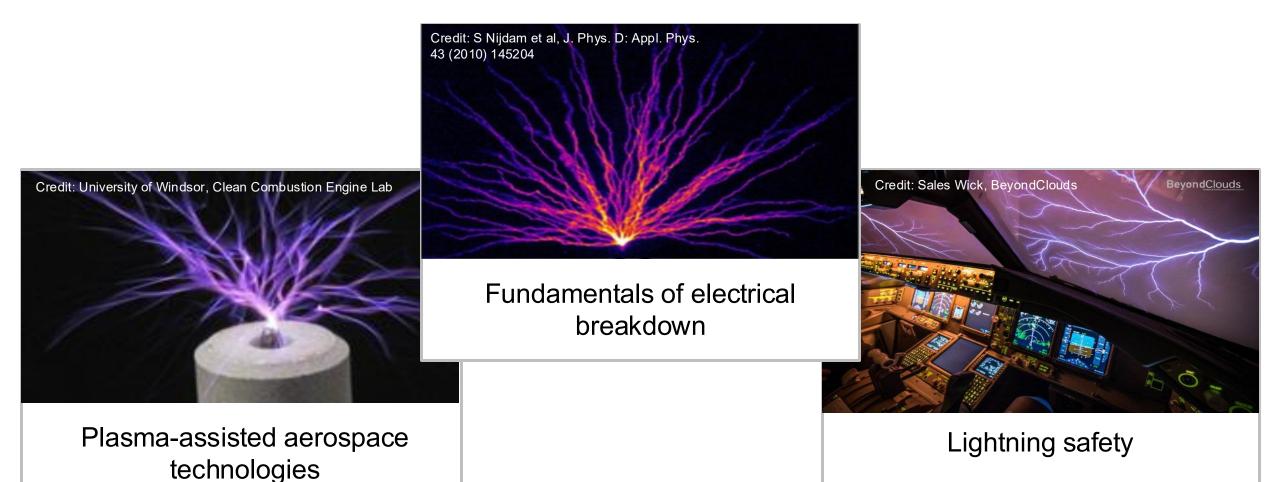
AEROASTRO

Career Goals

Enable predictive design and control of plasma phenomena and technologies

Mission of the Aerospace Plasma Group

Unveil the physics of transient electrical discharges to understand our natural environment and enable their control for the benefit of our planet and beyond



Some of the (fun) things we do to get our research done

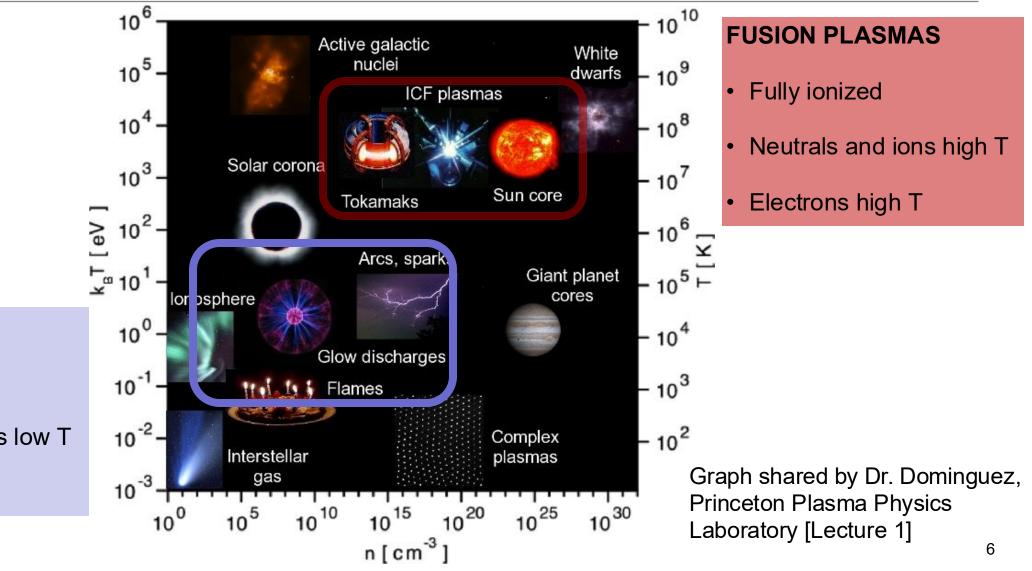
- Testing in lightning lab
- Fly drones
- Testing in wind tunnel
- Burn stuff
- Learn about lasers

Collaborate with scientists from around the country & abroad!

Agenda for today

- What is a Low Temperature Plasma (LTP)?
- The Electron Energy Distribution Function \rightarrow Non-Maxwellian
- The Reduced Electric Field, E/N \rightarrow Plasma Chemistry
- Fluid Models and the Drift-Diffusion Approximation
- Some Examples and Applications (from my grad students)

Low Temperature Plasma (LTP)



LTP PLASMAS

- Partially ionized
- Neutrals and ions low T
- Electrons high T

Low Temperature Plasmas (LTP)

• Also known as: Non-Thermal Plasmas (NTP), Cold Plasmas, Non-Equilibrium Plasmas...

FUSION PLASMAS

- Fully ionized
- Neutrals and ions high T (~10⁸ K)
- Electrons high T (~10⁸ K)
- In thermal equilibrium
- Fusion reactions for energy
- Fully magnetized

COLD PLASMAS

- Partially ionized
- Neutrals and ions low T (100-1000K)
- Electrons high T (10⁴-10⁵ K)
- Out of thermal equilibrium
- Very rich and versatile chemistry
- Often unmagnetized
- What is common to LTP: **NON-EQUILIBRIUM** (in several fronts!)

Agenda for today

- What is a Low Temperature Plasma (LTP)?
- The Electron Energy Distribution Function → Non-Maxwellian
- The Reduced Electric Field, $E/N \rightarrow Plasma$ Chemistry
- Fluid Models and the Drift-Diffusion Approximation
- Some Examples and Applications (from my grad students)

Kinetic Theory and Distribution Functions

- Describes gas behavior based on particle motion & interactions
 - · Particles: electrons, ions, atoms, nolecules
- Focuses on submicroscopic (statistical) behavior, not just macroscopic properties
- Phase Space Representation (6D) (\vec{x}, \vec{w}) • 3D physical space • 3D velocity (momentum) space • Velocity Distribution Function (VDF) \times $f(\vec{x}, \vec{w}, t) =$ $\frac{4}{2}$ parhiles in $(\vec{x}, d^{3}x) (\vec{w}, d^{3}w)$ $d^{3} \times d^{3}w$

Recovering the macroscopic behavior

- If $f(\vec{x}, \vec{w}, t)$ is known \rightarrow all macroscopic values of physical interest are known!
- Macroscopic Properties from $f(\vec{x}, \vec{w}, t) \longrightarrow \text{Remove the } \vec{w}$ dependency
 - Macroscopic quantities: density, pressure, temperature (n, p, τ)
 - Can be obtained via averages (or moments) of the velocity distribution
 - E.g. 1) Total number density, $n(\vec{x}, t)$: # of particles per u. volume, irrespective of velocity $n = n(\vec{x}, t) = \iint_{W_{x} \to -\alpha} \int_{W_{x} \to -\alpha} \int_{W_$

Recovering the macroscopic behavior

The store with

• E.g. 2) Mean velocity, $\vec{u}(\vec{x}, t)$: average velocity of all particles at that location, \vec{x}

 $\langle \vec{W} \rangle = \vec{U}(\vec{x},t) = \underbrace{\prod_{i=1}^{\infty} \vec{W} f d^{3}W}_{\prod_{i=1}^{\infty} f d^{2}W} = \frac{1}{n} \underbrace{\prod_{i=1}^{\infty} \vec{W} f d^{3}W}_{\prod_{i=1}^{\infty} f d^{2}W}$

- The concepts of temperature and pressure are related to the motion of individual particles with respect to this average fluid velocity
- Definition: random (or peculiar) velocity of a particle, $\vec{c}(\vec{x},t)$: velocity of $\vec{c}(\vec{x},t)$: velocity of $\vec{c}(\vec{x},t)$: $\vec{c}(\vec{x},t)$: $\vec{c}(\vec{x},t)$:
- E.g. 3) Temperature, $T(\vec{x}, t)$: thermal energy equivalent to the random KE

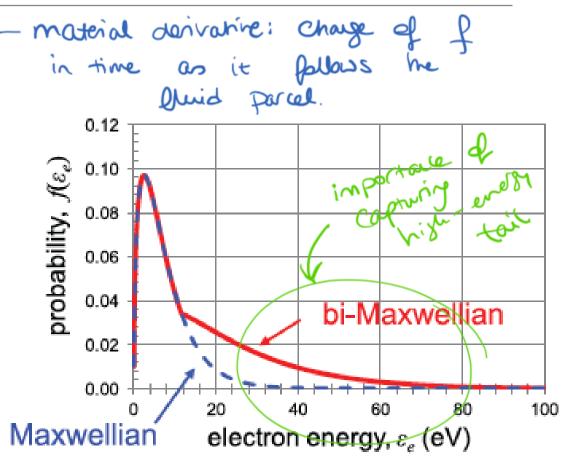
$$\left\langle \frac{1}{2}mc^2 \right\rangle = \frac{3}{2}kT(\vec{x},t)$$

Boltzmann equation & distribution functions

• Governing equation that describes $f(\vec{x}, \vec{w}, t)$

$$\frac{Df_s}{Dt} = \frac{\partial f_s}{\partial t} + w_i \frac{\partial f_s}{\partial x_i} + \underbrace{\frac{F_i}{m_s}}_{\mathcal{Q}_i} \frac{\partial f_s}{\partial w_i} = \underbrace{\left(\frac{df_s}{dt}\right)_{\text{coll}}}_{\text{coll}}$$

- In equilibrium, *f* follows a Maxwellian distribution
- In LTP, we often must solve the Boltzmann equation to find the electron energy distribution function → Non-Maxwellian electron energy distribution function
- The high energy-tail is very important for the chemistry!!



D. Go. Ionization and Ion Transport (Second Edition): A primer for the study of gas discharges and plasmas - https://doi.org/10.1088/978-0-7503-3991-9 12

Agenda for today

- What is a Low Temperature Plasma (LTP)?
- The Electron Energy Distribution Function \rightarrow Non-Maxwellian
- The Reduced Electric Field, $E/N \rightarrow Plasma$ Chemistry
- Fluid Models and the Drift-Diffusion Approximation
- Some Examples and Applications (from my grad students)

The local field approximation

• Electrons gain energy from the field

$$\dot{\epsilon}_{gain} = n_e \vec{v}_e \cdot (-e\vec{E}), \ \vec{v}_e = -\mu_e \ \vec{E}$$

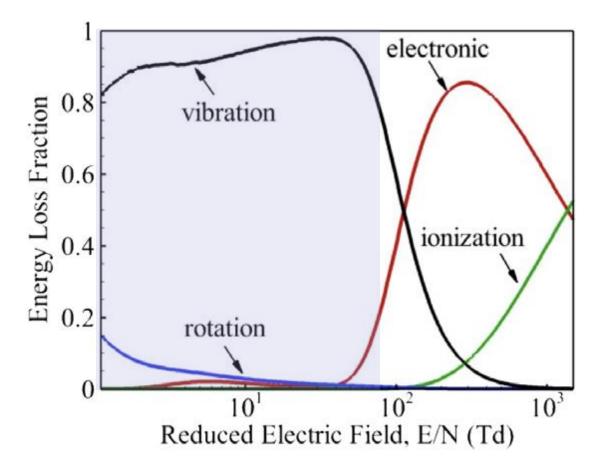
- And spend it in collisions (locally) $\dot{\epsilon}_{lost} = n_e v_{eh} \frac{2m_e}{m_h} \delta \frac{3}{2} k(T_e - T_h)$
- Electron temperature/ energy is defined by the reduced electric field

Égoin = Élegt =D

$$\mathbf{E}_{i} = \mathbf{E}_{i} = \mathbf{E}_{i}$$

anode

E/N defines the chemistry

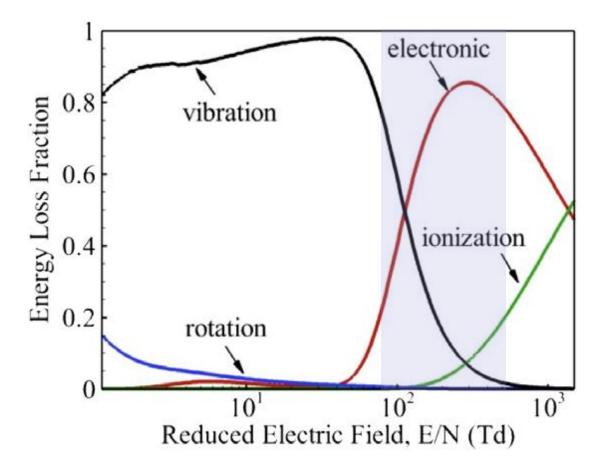


E/N < 100 Td

- Energy goes primarily into exciting rotational modes and low-energy vibration
- Rotational excitation rapidly equilibrates with gas temperature ($\tau_{RT} \sim 0.1 ns$)
- Vibrational-translational (VT) relaxation times are much longer ($\tau_{VT} \sim 100 \mu s$)

$$1 \text{Td} = 10^{-17} V cm^2 \sim 250 \text{V}$$
 across a 1cm gap at STP ¹⁵

E/N defines the chemistry



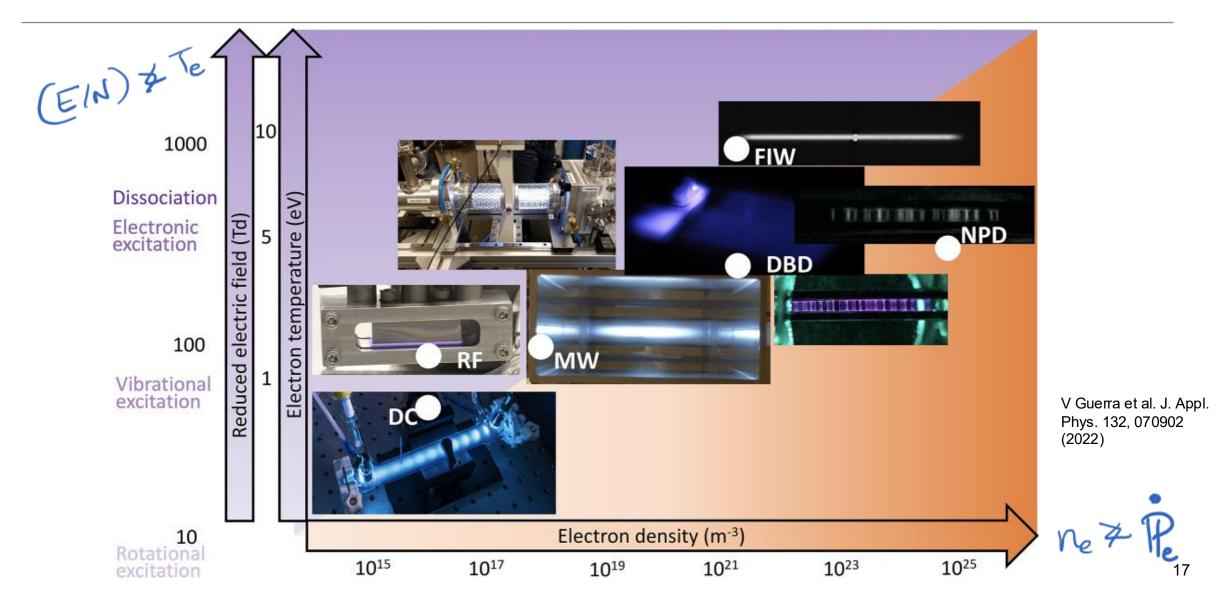
E/N ~ 100-400 Td

- Most energy goes into exciting electronic degrees of freedom
- Electronically excited states rapidly quench
- Quenching often results in dissociation/energy release
- Occurs much faster than VT relaxation ("fast gas heating")

$$N_2^* + O_2 \rightarrow N_2 + O + O + \epsilon$$

 $1Td = 10^{-17} Vcm^2 \sim 250V$ across a 1cm gap at STP ¹⁶

Different plasma sources can access different E/N



Nanosecond Pulsed Discharges (NPD)

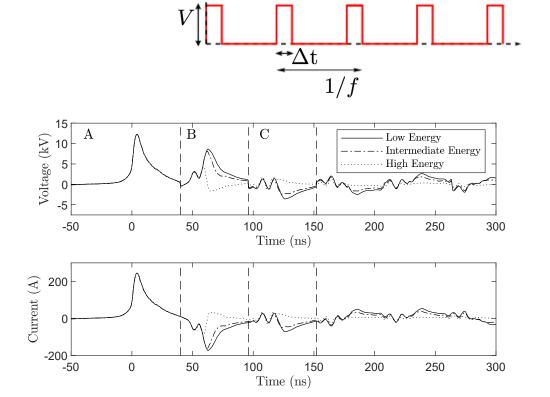
- High E/N can be accessed using pulsed power → plasma shielding effects!
- To couple the energy to the electrons (nonequilibrium), current needs to be limited

Nanosecond Pulsed Discharges (NPD)

- Short duration pulses: Non-equilibrium, high E/N
- High frequency: Sustain plasma

Eectrical parameters

- Gas gap: ~1-10mm
- Electrical: ~10kV, ~20ns, 1-50kHz
- Energy per pulse: ~100µJ-10mJ
- Power: 0.1-500W
- E/N ~ 180-500 Td



Agenda for today

- What is a Low Temperature Plasma (LTP)?
- The Electron Energy Distribution Function \rightarrow Non-Maxwellian
- The Reduced Electric Field, $E/N \rightarrow Plasma$ Chemistry

Fluid Models and the Drift-Diffusion Approximation

Some Examples and Applications (from my grad students)

From Kinetic Theory to Fluid Models

< ana atos

• Fluid models are derived by taking moments of the Boltzmann equation

$$\begin{bmatrix} \mathsf{BE} \end{bmatrix}: \frac{Df_s}{Dt} = \frac{\partial f_s}{\partial t} + w_i \frac{\partial f_s}{\partial x_i} + \frac{F_i}{m_s} \frac{\partial f_s}{\partial w_i} = \left(\frac{df_s}{dt}\right)_{\text{coll}}$$

- The general equations are very complicated and still need to be combined with Maxwell's equations for \vec{E} and \vec{B} !

Drift-diffusion approximation typically used in LTP

- Fluid models should be simplified given the specific problem of interest
- For LTP a multi-fluid model is needed
- In the case of LTP, a common approximation is the 'drift-diffusion' model

• Combines all 3 conservation equations into 1

$$\begin{array}{c} \underset{conversion}{\atop{conversion}{\atop{c$$

Where is the momentum equation?

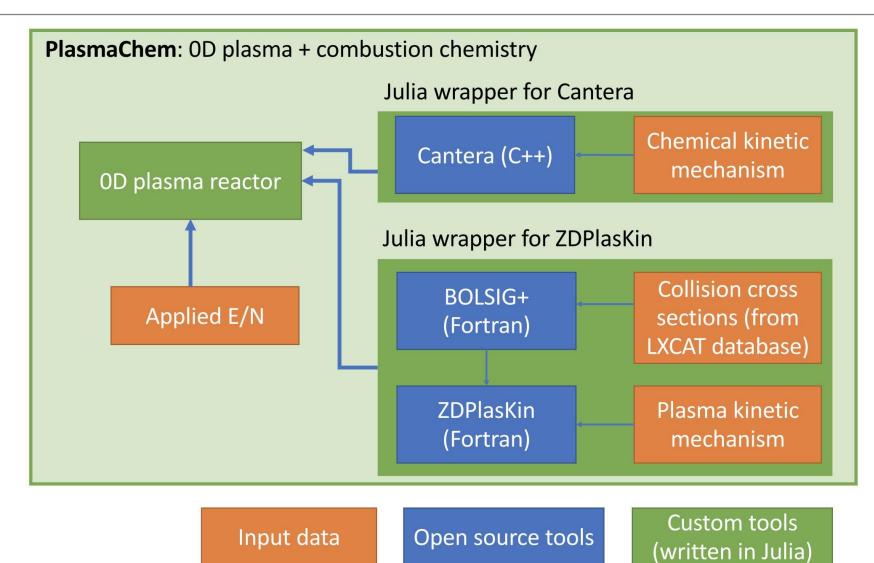
$$\begin{split} \frac{\partial n_p}{\partial t} + \nabla \cdot \vec{\Gamma}_p &= S_p, & \vec{\Gamma}_p = \operatorname{sign}(q_p) n_p \mu_p \vec{E} - D_p \nabla n_p, \\ \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \varepsilon_0 \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot (\epsilon_r \nabla V) &= -e(n_i - n_e), \\ \hline \nabla \cdot$$

Agenda for today

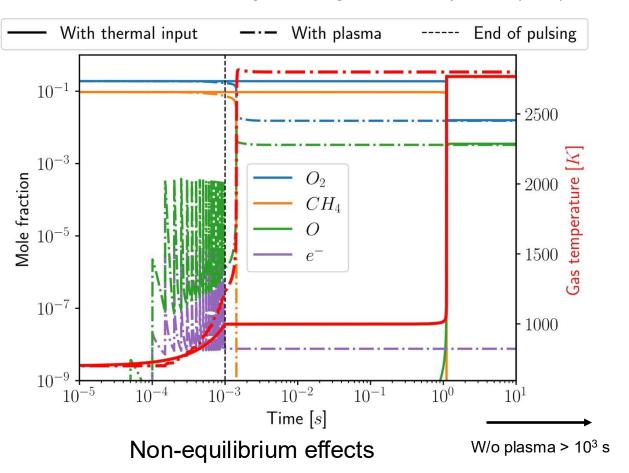
- What is a Low Temperature Plasma (LTP)?
- The Electron Energy Distribution Function \rightarrow Non-Maxwellian
- The Reduced Electric Field, E/N \rightarrow Plasma Chemistry
- Fluid Models and the Drift-Diffusion Approximation

Some Examples and Applications (from my grad students)

How do we bring this together in research?



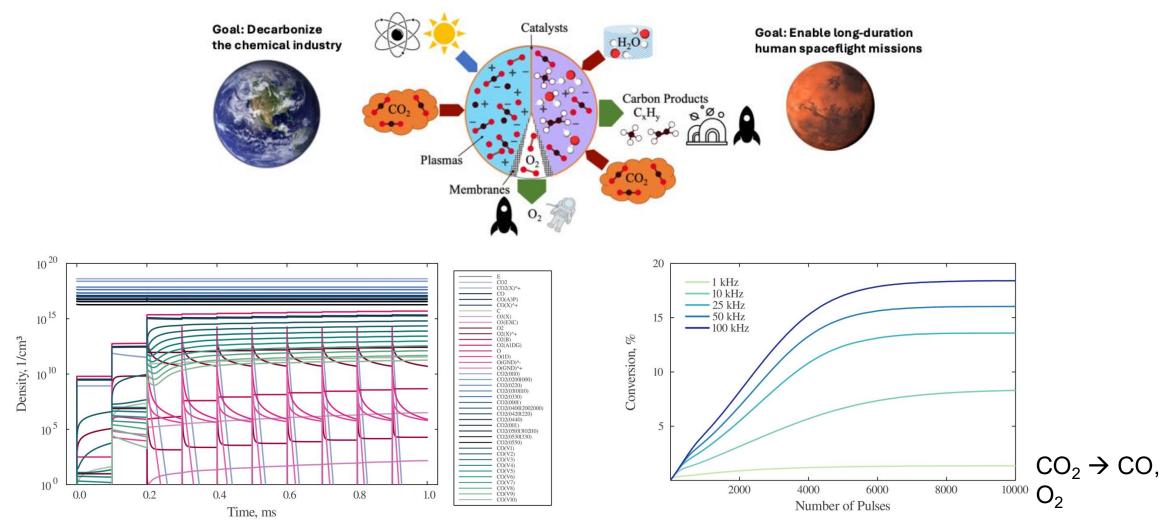
Examples – Plasma-assisted combustion



Performance metric for ignition: ignition delay time (IDT)

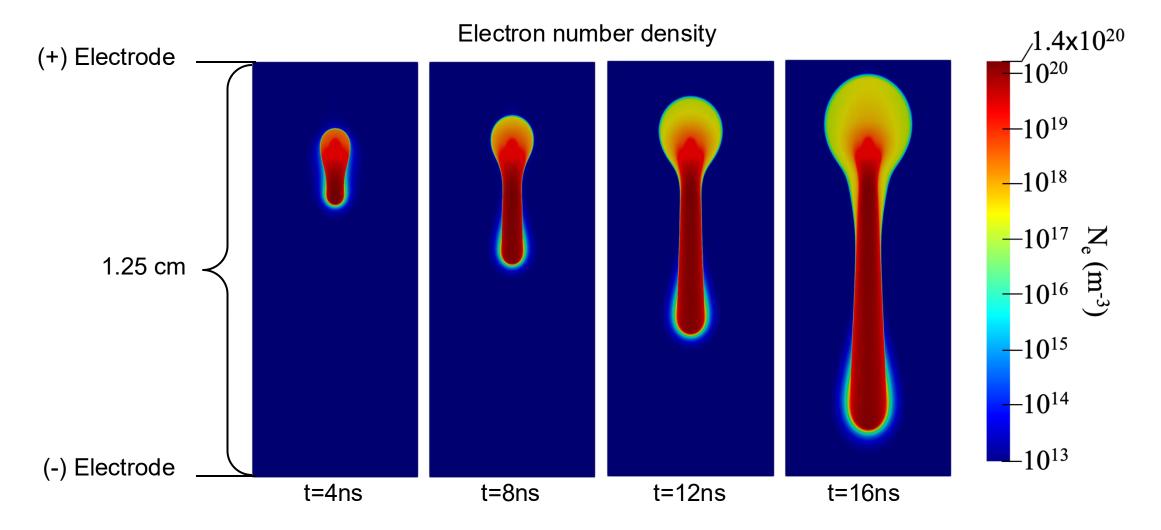
R. Dijoud, N. Laws, and C. Guerra-Garcia. Mapping the performance envelope and energy pathways of plasma-assisted ignition across combustion environments. *Combustion and Flame*, 2024. https://www.sciencedirect.com/science/article/pii/S0010218024005029

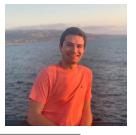
Examples – Plasma-based CO₂ conversion



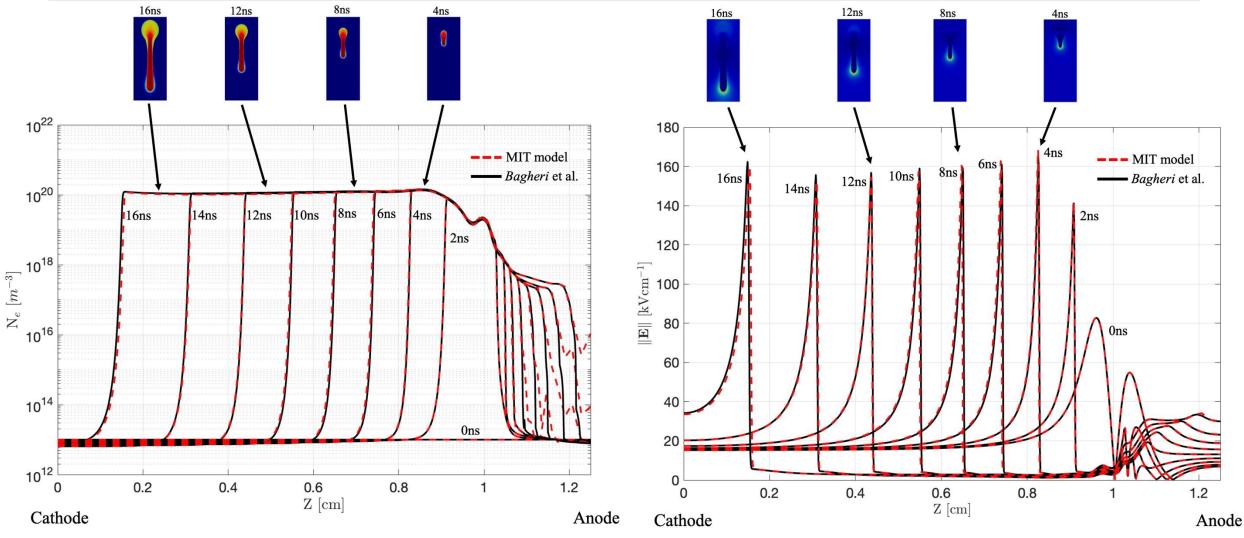
L. McKinney, T. Silva, V. Guerra, and C. Guerra-Garcia. Kinetic modeling of CO2 nanosecond pulsed discharges: insights for reactor design. In preparation, 2025

The drift-diffusion approximation to model streamers





The drift-diffusion approximation to model streamers



Bagheri, Behnaz, et al. Plasma Sources Science and Technology 27.9 (2018): 095002

Simulated by Sam Austin, MIT Aerospace Plasma Group

28

Summary of concepts

- Common to all LTP is their non-equilibrium
 - Thermal: Electrons are much hotter than the heavy species in the gas
 - Energy distribution functions often non-Maxwellian
 - Chemical non-equilibrium is an asset for numerous applications
- The reduced electric field, E/N, is critical to describe these plasmas
- Fluid models for these multi-species plasmas are complex, and simplifications are needed, the drift-diffusion approximation is the most common modelling approach
- The numerous applications of LTP benefit from *dual* scientific backgrounds (e.g. Aerospace + Plasma!)